Epithelial Cell Stretching and Luminal Acidification Lead to a Retarded Development of Stria Vascularis and Deafness in Mice Lacking Pendrin
نویسندگان
چکیده
Loss-of-function mutations of SLC26A4/pendrin are among the most prevalent causes of deafness. Deafness and vestibular dysfunction in the corresponding mouse model, Slc26a4(-/-), are associated with an enlargement and acidification of the membranous labyrinth. Here we relate the onset of expression of the HCO(3) (-) transporter pendrin to the luminal pH and to enlargement-associated epithelial cell stretching. We determined expression with immunocytochemistry, cell stretching by digital morphometry and pH with double-barreled ion-selective electrodes. Pendrin was first expressed in the endolymphatic sac at embryonic day (E) 11.5, in the cochlear hook-region at E13.5, in the utricle and saccule at E14.5, in ampullae at E16.5, and in the upper turn of the cochlea at E17.5. Epithelial cell stretching in Slc26a4(-/-) mice began at E14.5. pH changes occurred first in the cochlea at E15.5 and in the endolymphatic sac at E17.5. At postnatal day 2, stria vascularis, outer sulcus and Reissner's membrane epithelial cells, and utricular and saccular transitional cells were stretched, whereas sensory cells in the cochlea, utricle and saccule did not differ between Slc26a4(+/-) and Slc26a4(-/-) mice. Structural development of stria vascularis, including vascularization, was retarded in Slc26a4(-/-) mice. In conclusion, the data demonstrate that the enlargement and stretching of non-sensory epithelial cells precedes luminal acidification in the cochlea and the endolymphatic sac. Stretching and luminal acidification may alter cell-to-cell communication and lead to the observed retarded development of stria vascularis, which may be an important step on the path to deafness in Slc26a4(-/-) mice, and possibly in humans, lacking functional pendrin expression.
منابع مشابه
Free radical stress-mediated loss of Kcnj10 protein expression in stria vascularis contributes to deafness in Pendred syndrome mouse model.
Pendred syndrome is due to loss-of-function mutations of Slc26a4, which codes for the HCO(3)(-) transporter pendrin. Loss of pendrin causes deafness via a loss of the K(+) channel Kcnj10 in stria vascularis and consequent loss of the endocochlear potential. Pendrin and Kcnj10 are expressed in different cell types. Here, we report that free radical stress provides a link between the loss of Kcnj...
متن کاملLoss of cochlear HCO3 secretion causes deafness via endolymphatic acidification and inhibition of Ca reabsorption in a Pendred syndrome mouse model
Wangemann P, Nakaya K, Wu T, Maganti RJ, Itza EM, Sanneman JD, Harbidge DG, Billings S, Marcus DC. Loss of cochlear HCO3 secretion causes deafness via endolymphatic acidification and inhibition of Ca reabsorption in a Pendred syndrome mouse model. Am J Physiol Renal Physiol 292: F1345–F1353, 2007. First published February 13, 2007; doi:10.1152/ajprenal.00487.2006.— Pendred syndrome, characteriz...
متن کاملLoss of cochlear HCO3- secretion causes deafness via endolymphatic acidification and inhibition of Ca2+ reabsorption in a Pendred syndrome mouse model.
Pendred syndrome, characterized by childhood deafness and postpuberty goiter, is caused by mutations of SLC26A4, which codes for the anion exchanger pendrin. The goal of the present study was to determine how loss of pendrin leads to hair cell degeneration and deafness. We evaluated pendrin function by ratiometric microfluorometry, hearing by auditory brain stem recordings, and expression of K(...
متن کاملLoss of KCNJ10 protein expression abolishes endocochlear potential and causes deafness in Pendred syndrome mouse model
BACKGROUND Pendred syndrome, a common autosomal-recessive disorder characterized by congenital deafness and goiter, is caused by mutations of SLC26A4, which codes for pendrin. We investigated the relationship between pendrin and deafness using mice that have (Slc26a4+/+) or lack a complete Slc26a4 gene (Slc26a4-/-). METHODS Expression of pendrin and other proteins was determined by confocal i...
متن کاملMacrophage invasion contributes to degeneration of stria vascularis in Pendred syndrome mouse model
BACKGROUND Pendred syndrome, an autosomal-recessive disorder characterized by deafness and goiter, is caused by a mutation of SLC26A4, which codes for the anion exchanger pendrin. We investigated the relationship between pendrin expression and deafness using mice that have (Slc26a4+/+ or Slc26a4+/-) or lack (Slc26a4-/-) a complete Slc26a4 gene. Previously, we reported that stria vascularis of a...
متن کامل